Biology EOC Review Booklet

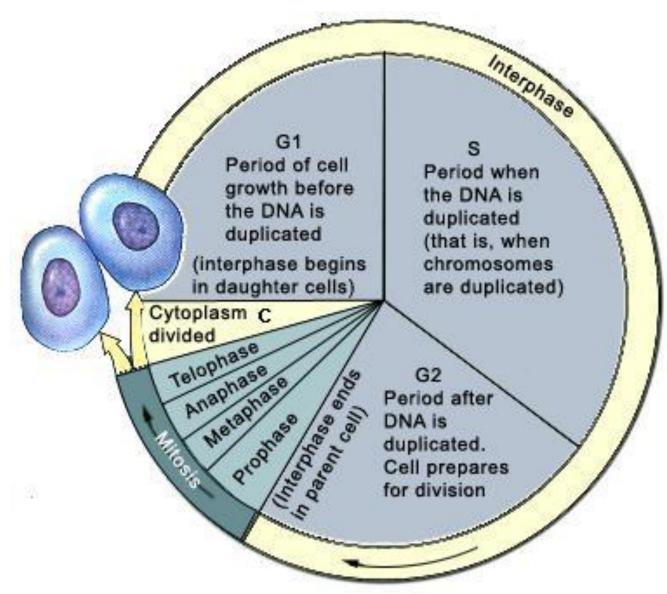
REPORTING CATEGORY 1 CELL STRUCTURE & FUNCTION.

You will have a total of 11 questions from this concept.

- DNA:
 - Deoxyribonucleic acid, contains genetic information (blueprint for proteins); found in all cells.
- Nucleus:
 - Membrane bound organelle, contains DNA; only found in eukaryotes
- Cell Membrane
 - Lipid bilayer (two layers), surrounds the cell and separate the cell from the rest of the world; found in all cells.

- Cell Wall:
 - Surrounds cell membrane, extra barrier for cell; found in plants cells, fungal cells, and bacterial cells
- Flagella:
 - Whip like tail used to move; found in some bacterial cells, sperm cells, some protists
- Ribosome:
 - Site of protein synthesis, made primarily of rRNA; found in all cells

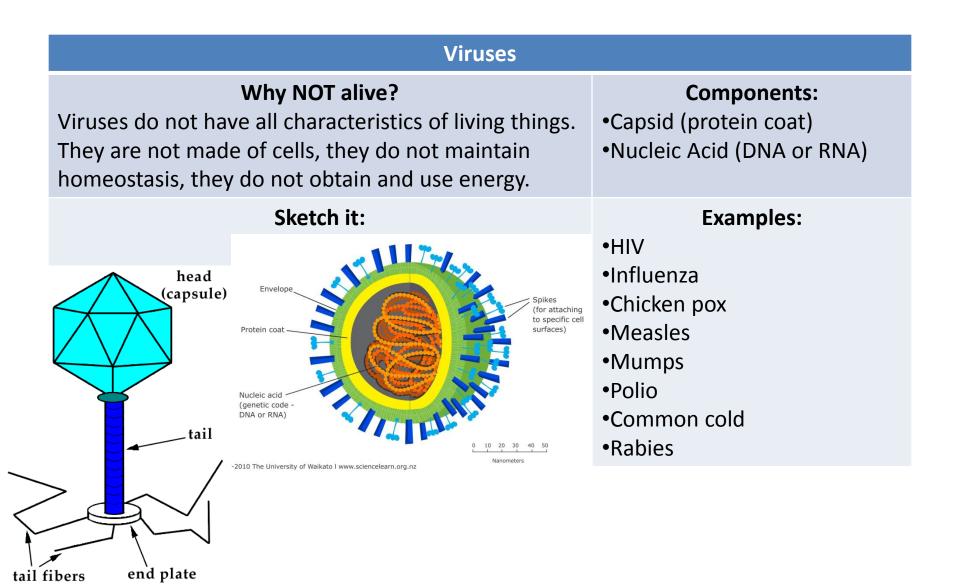
- Mitochondria:
 - Site of cellular respiration, makes energy (ATP); found in eukaryotic cells
- Chloroplasts:
 - Site of photosynthesis; found in some bacterial cells, plant cells, some protists
- ER (endoplasmic reticulum):
 - Internal membrane system in cells in which lipid components of the cell membrane are assembled and some proteins are modified; found in eukaryotic cells


- Gogli Body/Apparatus:
 - Stack of membranes in the cell that modifies, sorts, and packages proteins from the ER; found in eukaryotic cells
- Lysosome:
 - Cell organelle filled with enzymes needed to break down certain materials in the cell; found in eukaryotes
- Prokaryote:
 - Cell with no nucleus or other membrane bound organelles; eubacteria and archaebacteria
- Eukaryote:
 - Cell with nucleus and organelles; includes plants, animals, fungi, and protists

- Passive Transport:
 - movement of materials without using energy
- Osmosis:
 - Diffusion of water through a selectively permeable membrane (like across a cell membrane)
- Diffusion:
 - Process by which molecules tend to move from an area where they are more concentrated to an area where they are less concentrated.
- Facilitated Diffusion:
 - Movement of specific molecules across cell membranes through protein channels

- Active Transport:
 - Energy-requiring process that moves materials across a cell membrane against a concentration difference. Includes phagocytosis and pinocytosis.

	Mitosis	Meiosis	
What is the function?	To divide the nucleus	To create sex cells	METOSIS Synapsis and crossing over occur MITOSIS
When does this happen?	Before the cell divides	Before cell division during interphase	Homologues align independently Homologues separate Homologues separate
How many cells are made?	2	4	Daughter cells
Describe the cells (different or identical; haploid or diploid)	Identical & Diploid (2N) Somatic (body cells)	Different & haploid (N) Gametes (sex cells)	Daughter chromosomes separate Daughter nuclei are not genetically identical to parent cell


Label the Cell Cycle

- What is the cell cycle?
 - Series of events that cells go through as they grow and divide. Cancer is the result of an uncontrolled cell cycle.
- What happens if there is an error in the cell cycle?
 - The daughter cells will not have the correct information. A mutation has occurred.
- When is DNA replicated?
 - During S period (synthesis) of interphase
- What is cell differentiation?
 - When cells specialize in functions. Ex. Stem cells become bone cells, muscle cells and neurons

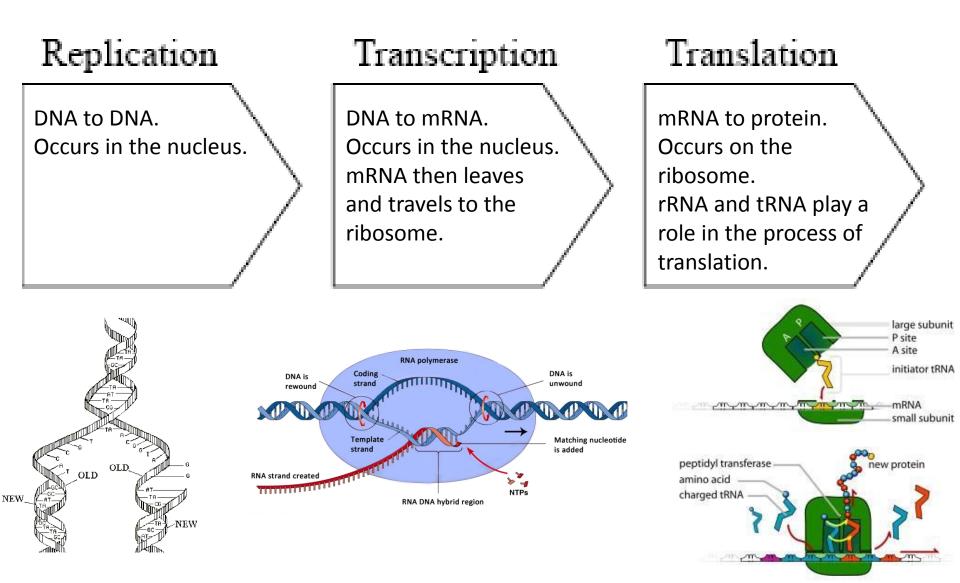
Plant Specialized Cells

- Leaves:
 - Collect sunlight for photosynthesis, gas (O_2/CO_2) exchange through the stomata.
- Stems:
 - Hold up leaves and flowers, contains vascular tissue (xylem & phloem)
- Xylem vs. Phloem:
 - Xylem carries water up from the roots to the rest of the plant
 - Phloem carries sugar from the leaves and nutrients from roots to the rest of the plant
- Roots:
 - Attach/anchor plant to the ground, absorb water and nutrients from the soil
- Flowers:
 - Seed-bearing structures, will sometimes produce fruit, attract pollinators (bees & butterflies) to the plant.

	Elements	Monomers	Functions
Nucleic Acid HO - P - O HO - P - O	Carbon Hydrogen Oxygen Nitrogen Phosphorus Sulpher	 Phosphate group Sugar (ribose or deoxyribose) Nitrogenous base 	Stores and transmits hereditary information
Protein H R O N-C-C H H O-H	Carbon Hydrogen Oxygen Nitrogen	Animo Acids	 Controls rate of reactions (enzymes) Forms bones and muscles Transports materials in and out of cells Fights diseases
Lipid	Carbon Hydrogen Oxygen	Glycerol Fatty Acids	 Building block of biological membranes Makes coverings waterproof Stores energy & provides insulation
Carbohydrate	Carbon Hydrogen Oxygen	Monosaccarides	Provides most the energy for cell processes.

Lactose

REPORTING CATEGORY 2 MECHANISMS OF GENETICS


You will have a total of 11 questions from this concept.

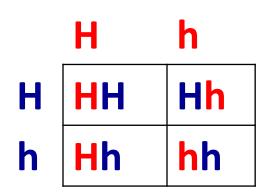
	DNA	RNA
Name the nitrogenous bases	Adenine – Thymine Guanine – Cytosine	Adenine – Uracil Guanine – Cytosine
Double or single stranded	Double stranded	Single stranded
Type of sugar	Deoxyribose	Ribose Cytosee
Draw the nulceotide	(a) (b) Cyrypt P Parene Education, ite., publiciting as Branens Chremits	Duarren Duarren Acenne Huch Liuci Michectases of HIA
Where is it found?	Nucleus	Nucleus, cytoplasm, ribosomes

- A change in DNA is called a:
 MUTATION
- Types of Mutations

Original DNA ATTGGC

- Insertion: when a base (or gene) is added;
 - ATATGGC
- Deletion: when a base (or gene) is deleted;
 - ATTGC
- Substitution: when a base (or gene) is change;
 - GTTGGC
- Translocation: when bases (or genes) are moved;
 - GGCATT

- Dominant:
 - An allele is considered dominant when it hides or masks other alleles. Represented with CAPITAL letters.
- Recessive:
 - An allele is considered recessive when it can be expressed only if no other allele for that trait is present. Represent with lowercase letters.
- Homozygous:
 - Have two identical alleles for a trait. HH or hh
- Heterozygous:
 - Having two different alleles for a trait. Hh


• Allele:

– An allele is a specific form of a gene

- Trait:
 - Characteristics of an organism; height, hair color, eye color, flower color, etc.
- Genes:
 - Genes are the parts of a chromosome that determine a specific trait of an organism.

- Genotype:
 - The genotype for an organism is represented by the actual alleles for a trait. Bb
- Phenotype:
 - The phenotype for an organism is the actual physical expression of the alleles, brown hair.

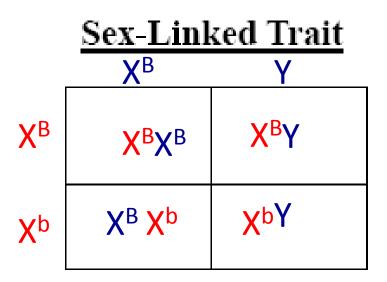
Punnett Squares

Punnett Squares

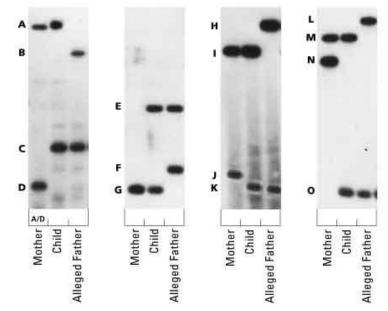
A and B are codominant. O is recessive to both A and B

Example: A man with AB blood marries a woman with O blood. What are the possible genotypes of their children

Α

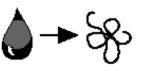

В

ABO Blood Type		
I ^A i	I ^A i	
l ^B i	l ^B i	

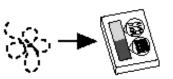

Punnett Squares

Sex-linked traits are genes that are carried only on the X chromosome. Males are more likely to have a sexlinked trait because they only have one X chromosome.

Hemophilia and colorblindness are examples of sex linked traits.



- DNA Fingerprinting:
 - A method to compare DNA samples. Can be used to determine paternity or solve crimes.



THE PROCESS OF DNAFINGERPRINTING

 The process begins with a blood or cell sample from which the DNA is extracted.

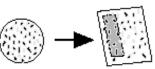
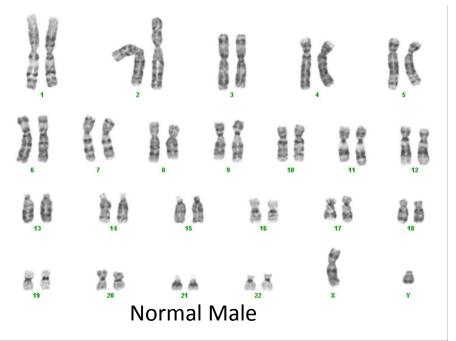
2. The DNA is cut into fragments using a restriction en zyme. The fragments are then separated into bands by electrophoresis through an aganose gel.

3. The DNA band pattern is transferred to a nylon membrane.

4. A radioactive DNA probe is introduced. The DNA probe binds to specific DNA sequences on the nylon membrane.

5. The excess probe material is washed away leaving the unique DNA band pattern.

6. The radioactive DNA pattern is transferred to X-rayfilm by direct exposure. When developed, the resultant visible pattern is the DNA FINGER PRINT.

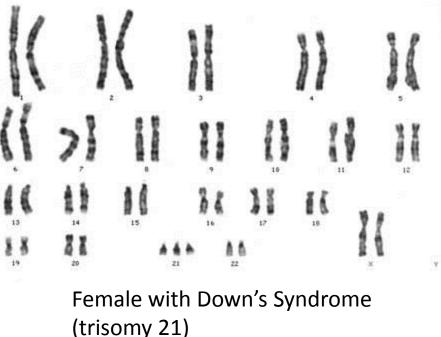
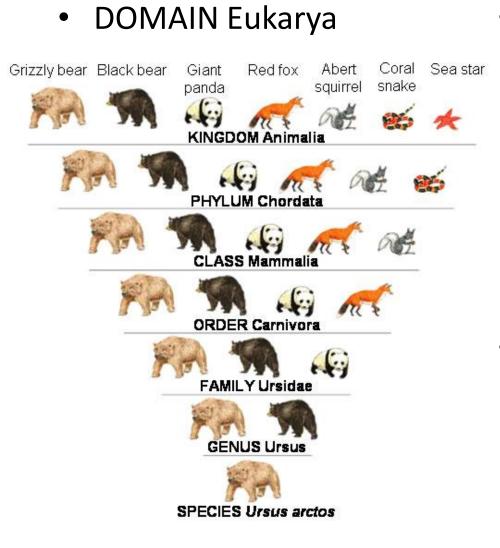


Figure 3.

- Karyotype/Chromosomal Analysis:
 - Picture of a person's homologous chromosomes, can be used to determine chromosomal mutations and disorders.



- Genetic Engineering/Modifications:
 - Uses viruses to insert beneficial genes into other organisms.
 - Commonly used in agriculture to make plants that are resistant to weed killers.

You will have a total of 10 questions from this concept.

REPORTING CATEGORY 3 BIOLOGICAL EVOLUTION AND CLASSIFICATION

• What is a scientific name?

- A name used by scientists, especially the taxonomic name of an organism that consists of the genus and species. Scientific names usually come from Latin or Greek. An example is *Homo sapiens*, the scientific name for humans.
- Binomial nomenclature?
 - A two part name including the *Genus* and *species* names of an organisms

Classification of Living Things

DOMAIN	Bacteria	Archaea		Euk	arya	
KINGDOM	Eubacteria	Archaebacteria	Protista	Fungi	Plantae	Animalia
CELL TYPE	Prokaryote	Prokaryote	Eukaryote	Eukaryote	Eukaryote	Eukaryote
CELL STRUCTURES	Cell walls with peptidoglycan	Cell walls without peptidoglycan	Cell walls of cellulose in some; some have chloroplasts	Cell walls of chitin	Cell walls of cellulose; chloroplasts	No cell walls or chloroplasts
NUMBER OF CELLS	Unicellular	Unicellular	Most unicellular; some colonial; some multicellular	Most multicellular; some unicellular	Multicellular	Multicellular
MODE OF NUTRITION	Autotroph or heterotroph	Autotroph or heterotroph	Autotroph or heterotroph	Heterotroph	Autotroph	Heterotroph
EXAMPLES	Streptococcus, Escherichia coli	Methanogens, halophiles	<i>Amoeba,</i> <i>Paramecium,</i> slime molds, giant kelp	Mushrooms, yeasts	Mosses, ferns, flowering plants	Sponges, worms, insects, fishes, mammals

Levels of Organization from atom to biosphere:

- Atom (smallest)
- Molecule
- Organelle
- Cell
- Tissue
- Organ
- Organ System
- Organism
- Population
- Community
- Ecosystem
- Biosphere (largest)

Biosphere	The part of Earth that contains all ecosystems	Biosphere
Ecosystem	Community and its nonliving surroundings	Hawk, snake, bison, prairie dog, grass, stream, rocks, air
Community	Populations that live together in a defined area	Hawk; snake, bison, prairie dog, grass
Population	Group of organisms of one type that live in the same area	Bison herd
Organism	Individual living thing	Bison
Groups of Cells	Tissues, organs, and organ systems	Nervous tissue Brain Nervous system
Cells	Smallest functional unit of life	Nerve cell
Molecules	Groups of atoms; smallest unit of most chemical compounds	Water DNA

What evidence supports the idea of Common Ancestry?

- Shared homologies (similarities)
 - Fossil record
 - Biochemistry (amino acid sequence)
 - Embryology
 - Homologous Anatomical Structures

Natural selection changes populations NOT individuals!

- How does natural selection to adaptations develop diversity in species?
 - Different populations can adapt to different habitats.
- What is an adaptation?
 - A variation that is favorable to the organisms survival. In forests with dark trees it is an adaptation to have dark colored wings.

REPORTING CATEGORY 4 BIOLOGICAL PROCESSES AND SYSTEMS

You will have a total of 11 questions from this concept.

Photosynthesis

- Organelle involved:
 - Chloroplast
- Equation:
 - − $6CO_2 + 6H_2O + light + chlorophyll \rightarrow C_6H_{12}O_6 + 6O_2$
- In simple English this means:
 - Water and carbon dioxide (from the air) are combine to make sugar (glucose) and oxygen. Light and chlorophyll must be present.
- Occurs in what type of cells:
 - Plants, some plant-like protists & blue-green algae
- Why it is important:
 - Autotrophs gather energy from the sun. This energy then is passed through the food web.

Cellular Respiration

- Organelle involved:
 - Mitochondria
- Equation:
 - $-C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + energy (ATP)$
- In simple English this means:
 - Sugars and oxygen are broken down into carbon dioxide, water and energy
- Occurs in what type of cells:
 - All cells (plants, animals, bacteria, fungi & protists)
- Why it is important:
 - Transforms energy stored in the bonds of carbohydrates into a form usable by the cell (ATP)

Interactions of Animal Body Systems

What body systems work together to do the following tasks? Explain.

Regulation/Homeostasis	Nutrient Absorption
Nervous System & Endocrine System	Digestive System & Circulatory System
The brain sends electrical signals the body	The digestive organs break down food
to control body temperature, blood sugar,	into small pieces to be used by cells. The
etc. Certain glands also sends hormones	blood vessels absorb the nutrients from
(chemical signals) to help regulate	the food from the small intestine and
homeostasis.	carry it throughout the body.
Reproduction	Defense from injury/illness
Endocrine System & Reproductive System	Immune System & Integumentary System
Hormones (testosterone and estrogen)	The white blood cells attack and kill
control when a person goes through	invaders (bacteria, viruses, etc.). The skin
puberty. These same hormones also	and hair protects the body from physical
control the production of gametes (sperm	injury. Some animals have claws that are
and eggs).	used in defense.

Interactions of PLANT Systems

What body systems work together to do the following tasks? Explain.

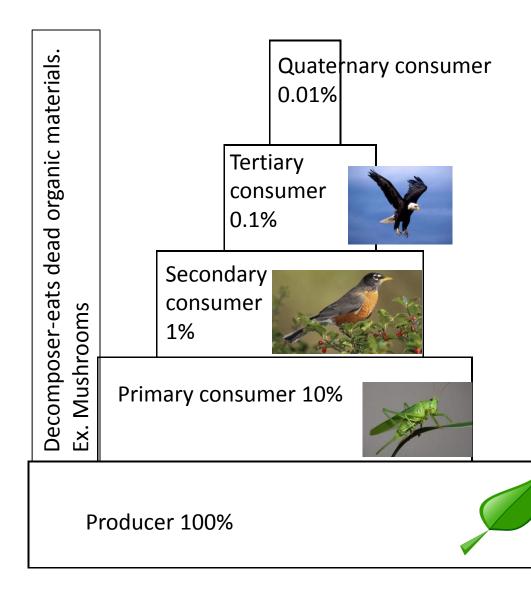
Transport Vasular tissues carry water from roots and sugars from leaves to the rest of the plant.	Response Plants have hormones. These hormones can cause buds to open into flowers, some plants can close their leaves as well (thigmotrophism). Hormones also cause roots to grow downward (gravitotropism) and stems to grow towards the light (phototropism).
Reproduction Flowers contain the gametes. Pollinators spread pollen (male gamete) between different flowers. The stems and leaves support the flowers.	Co-evolution with birds/bugs Flowers are brightly colored and scented to attract pollinators (birds and bugs)

REPORTING CATEGORY 5 INTERDEPENDENCE WITHIN

ENVIRONMENTAL SYSTEMS

You will have a total of 11 questions from this concept.

Interpret Relationships


Relationship	Description	Example
Predation	One organism kills and eats another organism.	Snake and mouse
Parasitism	One organism (host) is harmed and the other organism (parasite) is benefited.	Dog and flea
Commensalism	One organism is benefited, but the other is not harmed.	Cattle and egret
Mutualism	Both organisms benefit by living together.	Bees and flowers
Competition	When two organisms try to use the same resources.	Vultures fighting over food

How can ecological succession change populations?

 Different populations of plants will replace others as soil condition improve on new rock or after disasters like a forest fire.

Interdependence within Environmental Systems

Definitions Ecological Pyramid:


Tropic Level:

Carnivore: Animal that eats only meat

Omnivore: Animal that eats plants and meat.

Reporting Category 5

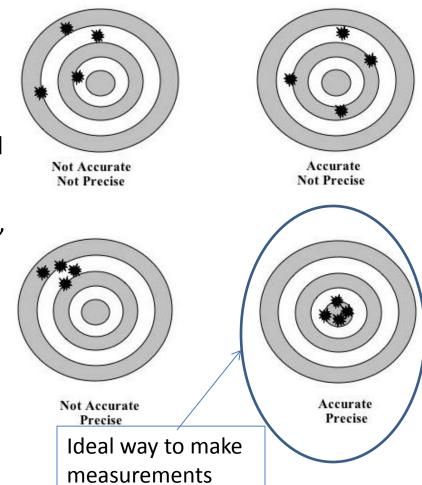
Interdependence within Environmental Systems. You will have a total of 11 questions from this concept.

Time in years

Limiting Factors: Factors that can reduce the

population size; such as space, food, water and shelter

Capstone Species: The top predator in an ecosystem. Sea otters are the capstone species in a kelp forest. Without sea otter, urchins would destroy the kelp habitat.


Biotic Potential vs.

Carrying Capacity: Few populations can live up to their **biotic potential** = where conditions are ideal, every member has food, shelter, no predators or pathogens in the environment, maximum reproduction. Carrying capacity: maximum number of individuals an environment's resources can sustain

- Lab Safety:
 - Never work alone
 - Always follow directions
- Conservation of Resources:
 - Dispose of materials properly
 - Always reuse or recycle when possible

- Nature of science, theory, law, hypothesis...
 - Science, as defined by the National Academy of Sciences, is the "use of evidence to construct testable explanations and predictions of natural phenomena, as well as the knowledge generated through this process." This vast body of changing and increasing knowledge is described by physical, mathematical, and conceptual models. Students should know that some questions are outside the realm of science because they deal with phenomena that are not scientifically testable.
 - Scientific hypotheses are tentative and testable statements that must be capable of being supported or not supported by observational evidence. Hypotheses of durable explanatory power which have been tested over a wide variety of conditions are incorporated into theories.
 - Scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers. Unlike hypotheses, scientific theories are well-established and highlyreliable explanations, but they may be subject to change as new areas of science and new technologies are developed.

- Data Collection
 - collect and organize qualitative and quantitative data and make measurements with accuracy and precision using tools such as calculators, spreadsheet software, data-collecting probes, computers, standard laboratory glassware, microscopes, various prepared slides, stereoscopes, metric rulers, electronic balances, gel electrophoresis apparatuses, micropipettors, hand lenses, Celsius thermometers, hot plates, lab notebooks or journals, timing devices, cameras, Petri dishes, lab incubators, dissection equipment, meter sticks, and models, diagrams, or samples of biological specimens or structures

- History of Science
 - Darwin studied the evolution of finches on the Galapagos Islands
 - Hooke saw dead cells in cork
 - Pasteur created first vaccine
 - Linneaus developed taxonomy system
 - Watson & Crick discovered shape of DNA, with the help of a picture from Franklin
 - Mendel studied genetics of peas
 - Leewenhooke saw living microorganisms in pond water
 - Schlieden & Schwann discovered all living things are made of cells.